

DIVISION 26 - Electrical

Preface

The Texas Tech University System's 'Design and Construction Standards', as administrated by Facilities Planning and Construction, are intended to serve as guidelines to the esign Pro!essional and Construction " anagement teams !or design develo#ment and construction administration o! Texas Tech University System \$TTUS% Ca#ital Prolects' They communicate the minimum ex#ectations and re (uirements relative to s#eci!ic building systems, design #rovisions, general s#eci!ication re (uirements, and administrative #rocedures !or ne) !acilities being constructed on Texas Tech University System \$*SU, " SU, TTU, TTU+SC, and TTU+SC ,I Paso% cam#uses' Several, but not all re (uirements !or each com#onent -nstitution or *gency) ithin the TTU System are covered' esign Pro!essionals, Construction " anagers at .is/

minimum (uality re(uirements' esign Pro!essionals are encouraged to identi!y and include e(uivalent #roducts and/or manu!acturers o!!ering com#arable #roducts to !acilitate o#en bidding environments'

to coordinate) ith the Utility Com#any !or connection to the utility com#any's trans!ormer and/or meter' Contractor shall coordinate) ith FP5C Prolect " anager !or the tem#orary #o) er interru#tion \$#o) er shutdo) n% re(uired to the interconnection and/or addition o! ne) loads \$i'e Utility Trans!ormer%'

*Il su##orts shall be !rom structural members o! the !acility' Ao conduit,) ire, cable, boxes, devices, etc', shall be su##orted !rom sus#ended ceiling or su##ort cables o! sus#ended ceilings'

*Il sur!aces shall be restored) here sur!ace !inish damage is evident' Physical material damage) ill re(uire re#lacement o! #art'

The Contractor shall insure that all) or/ has been accom#lished to the satis!action o! the *rchitect 5, ngineer o! . ecord #rior to energi4ing any circuit or ne) e(ui#ment'

*Il materials and e(ui#ment,) here a##licable, shall be listed by Under) riters 7aboratories and F " Blobal *##roved[®] and the installation shall be in accordance) ith the -2C, manu!acturer's recommendations, local utility com#any, and F " Blobal . ecommended Bood Practices'

The manulacturer's #ublished directions shall be lollo) ed in the delivery, storage, #rotection, installation, and) iring ol all e (ui#ment and material' The Contractor shall #rom#tly notily the *rchitect 5, ngineer ol . ecord, in) riting, ol any conllict bet) een the re (uirements ol the Contract ocuments and the manulacturers? directions and shall obtain the *rchitect and/or , ngineer's instructions belore #roceeding) ith the) or/' Should the Contractor #erlorm any such) or/ that does not com#ly) ith the manulacturers? directions or such instructions !rom the *rchitect and/or , ngineer, he shall bear all costs arising in connection) ith the deliciencies'

Contractor shall #rovide tem#orary construction #o) er and lighting to0at the site !or the use o! all trades'

> here conduit, race) ay, cable trays,) iring, etc' #ass through !loors,) alls, #artitions or ceilings having a re(uired smo/e and/or !ire resistive rating, such #e6 58(,)-5.15/2ti l #etsuearr age

*t a minimum, #rovide access #anels) here re(uired by codes and !or maintenance or service' Clean lam#s, re!lectors and lenses o! all lighting !ixtures' Clean #anelboards and e(ui#ment cabinets inside and out' *##ly touch1u# #aint o! the s#eci!ied color to any scratches or mars on the !inish o! all e(ui#ment, race) ay, etc'

Provide a #reliminary study and a com#lete short1circuit study and #rotective relay and device coordination study !rom the 16'<; /D utility service by 7ubboc/ Po) er and 7ight through the main disconnect\$s% o! the branch circuit #anelboards and motor0loads to 19 +P' This) or/ is to be #er!ormed by the manu!acturer o! the electrical gear and shall include the generator s/id mounted circuit brea/er to the largest branch device on the volt emergency and standby #anelboards' Provide arc1!lash calculations and labels !or each #iece o! electrical e (ui#ment modi!ied or #rovided in this contract'

Basic Electrical Materials and Methods

* conduit sleeve shall be t) o standard si4es larger than the si4e o! conduit it serves, exce#t) here E7in/ SealF casing seals are used in sleeves through) alls belo) grade' *II sleeves in !loor shall extend a minimum o! 6 inches above the !inished !loor' *II conduit #assing through concrete masonry) alls above grade shall have 181gauge galvani4ed steel sleeves' Sleeves set in concrete !loor construction shall be at least 1:1gauge galvani4ed steel exce#t at conduit su##orts' Sleeves set in concrete !loor construction su##orting conduit risers shall be standard) eight galvani4ed steel' Sleeves su##orting conduit risers @ inches and larger shall have three : inches long rein!orcing rods) elded at 169 degree s#acing to the sleeve and shall be installed embedded in the concrete or grou#ed to existing concrete' > here the conduit #asses through a sleeve, no #oint o! the conduit shall touch the sleeve' Seal around #enetrations through sleeving as indicated under !ire sto##ing as s#eci!ied and in com#liance) ith the re(uirements o! ivision 9; s#ecilications'

Electrical Power Metering and Control Devices

Po) er metering system at s) itchgear shall be Po) er7ogic \$or a##roved e(ual% that is com#atible) ith existing Po) er7ogic so!t) are'

Contractor shall #rovide the !ollo) ing Po) er7ogic devices and associated hard) are

- 1' For . esearch, 7aboratory, +igh Com#uting Processes 2uilding Provide Po) erlogic series P " 8999 model ", TS, P " 86<9 \$or a##roved e (ual% manu!actured by Schneider, lectric' Contractor shall coordinate) ith S) itchgear " anu!acturer exact si4e o! Current Trans!ormers \$CT's% and Po) er Trans!ormers \$PT's%'
- 6' For Beneral Classrooms, . esidence +alls, and Beneral 3!!ices 2uilding Provide
 Po) erlogic series P " =999 model ", TS, P " =@69 \$or a##roved e (ual% manu!actured by Schneider, lectric' Contractor shall coordinate) ith S) itchgear " anu!acturer exact si4e o! Current Trans!ormers \$CT's% and Po) er Trans!ormers \$PT's%'

Contractor is res#onsible to #rovide data dro# \$C*T1=e or C*T1:% at each meter location' Contractor shall coordinate) ith TTU Telecommunications e#artment !or 7ocal *rea Aet) or/ \$7*A% access'

ire and Ca!le

> ire, cable, and connectors shall be ne) and o! manu!acturer's standard materials, as indicated by #ublished #roduct in!ormation' Provide) ire, cable, and connector o! design and construction as re(uired !or the installation'

Provide !actory1!abricated) ire o! the si4e, rating, material and ty#e as indicated !or each service' > here not indicated, #rovide #ro#er selection as re(uired to com#ly) ith installation re(uirements and) ith A, C standards'

Mar"ing#

- 1' Provide ne) insulated conductors mar/ed according to A , C * rticle @19'
- 6' *II) ire and cable shall be U7 listed' -n addition to other standard labeling, all) ire and cable shall be mar/ed U7 on the outer sur!ace indicating U7 certi!ication'

*Il insulated) ire and cable shall con!orm to the minimum re(uirements o! -C, * Standards !or Cable -nstalled in > et 7ocations,) ith the cable sublected to all degrees o! moisture conditions' > ire and cable shall com#ly) ith the a##licable re(uirements o! the A, C, latest edition, in

regard to cable construction and usage'

The conductors o!) ires and cables shall be o! co##er \$tinned) here s#eci!ied%, and have conductivity in accordance) ith the standardi4ation

Facilities Planning and Construction Design and Construction Standards

- a' > here more than one conductor o! the same #hase or more than one neutral or ground conductor occurs at the same outlet or lunction box, these conductors shall be identi!iable !rom each other by use o! stri#es or distinguishing mar/ings'
- b' *II) iring associated) ith isolated ground rece#tacles \$line, neutral, ground% shall have a yello) tracer on each conductor'
- c' The neutral tracer color shall match the #hase conductor color) ith) hich it is associated'
- d' Use dillerent colors lor control) iring'

1wo-2o&r 3'-'isted 4ire 5ated S\$ste6s

For !ire #um# circuits, !ire detection0alarm0su##ression circuits, and other critical circuits to remain in service !or a #eriod during a !ire'

- 1' Si4e shall be Ao' 16 * > B minimum'
- 6' So!t1dra) n, annealed co##er' Solid !or Ao' 16 and Ao' 19 * > B' Stranded !or Ao' 8
 * > B and larger) ith Class12 stranding'
- @' -nsulation shall be Ty#e . ++, :99 volts, I91degree \$C%' . ubber insulated) ith silicone ceramilication' -nsulation classilied lo) smo/e #er *ST "1,1::61I;'
- <' Sheath shall be nonmetallic, moisture, sunlight and corrosion resistant, and !lame retardant s#eci!ically a##roved !or this a##lication'
- =' Conduit6
 - a' T) ofhour !ire1rated systems shall be installed in rigid metallic conduit as re(uired to con!orm to U71listing' Provide rigid metallic conduit system !or installation o! 61hour !ire1 rated conductors) here circuits #ass through and into the boundaries o! the building'

b'

. BS conduit, unless noted other) ise on dra) ings'

- :' Use , lectrical " etallic Tubing \$, " T%, si4e three1 (uarter inch or larger, !or 61hour !ire1 rated systems only) here a##roved in) riting by the , ngineer and the 3) ner'
- ;', lectrical circuit #rotective system shall be a##roved !or vertical installation, including cable su##ort mechanism'
- 8', lectrical circuit #rotective system shall be a##roved) ith a !ire rated seal used to elle#resheetd0.998087 0 0 1 115.92 5.3(i) 4.19158 (yn! electes 87759025 (ga)nd. 6519027 5511 (cu) it5.15007 (u) 0.590

ground,) ire #rovided ground) ire o! same construction as ungrounded circuit conductors'

- iii' > here t) o1hour !ire rated circuit system U71listing does not include
 #ulling lubricant, #rovide U71listed t) o1hour !ire rated circuit system) ith
 conductors suitable !or installation) ithout #ulling lubricant'
- 11' 3ther U71listed t) ofhour lire rated circuit #rotective systems may be used) here a##roved by the A, C and) here #ro#osed substitutions are acce#ted in) riting by the esign Pro!essional and the 3) ner' . e!er to ivision 91 re(uirements !or submittals and substitutions'
 - 1' " ineral1insulated \$ " -% cable #er A , C1@@6'
 - 6' U71listed !ire1) ra##ing !or conductors rated :99 volt and belo) '
 - @' Concrete encasement'
- 16' > here indicated on #lans or s#eci!ications, #rovide U717isted 61+our Fire1. ated system !or circuit\$s% rated : 99 volts or belo) '
- 1@' -nstall 61hour U717isted, !ire1rated system in rigid galvani4ed steel \$. BS% conduit, unless other) ise noted on dra) ings' > here acce#ted in) riting by , ngineer and 3) ner, t) o1hour U71 7isted !ire1rated system may be installed in electrical metallic tubing \$, " T%' . e!er to race) ay re(uirements'
- 1<' -nstall t) ofhour U717isted !ire1rated system in accordance) ith manu!acturer's instructions, the re(uirements o! the A, C and U7'
- 1=' Substitutions' > here substitution o! alternate t) o1hour U717isted !ire1rated systems are acce#ted in) riting by the , ngineer and the 3) ner, #rovide alternate systems in accordance) ith manu!acturer?s instructions and the re(uirements o! the A, C, U7 7isting, AFP*, and 3) ner?s standards' *Iternate systems include, but are not limited to, mineral1insulated \$ " -% cable, concrete encasement, and !ire1) ra##ing o! designated cable and conduit systems'

iring Connections and 1er 6 inations

- 1' Provide !actory1!abricated, com#ression1ty#e metal connectors o! the si4e, rating, material, ty#e and class as indicated !or each service' > here not indicated, #rovide #ro#er selection as re(uired to com#ly) ith installation re(uirements and) ith A, C standards' Select !rom only !ollo) ing ty#es, classes, /inds and style'
- 6' Ty#e6
 - a' Solderless #ressure connectors'
 - b' -nsulated s#ring) ire connectors) ith #lastic ca#s !or 19 * > B and smaller'
 - c' -nsulated ring1 or s#ade1ty#e com#ression terminals !or termination o! stranded conductors at) iring devices and terminal bloc/s'
 - d' Crim#'
 - e' Threaded'
- @' Class6 -nsulated'
- <' " aterial Co##er \$!or CU to CU connection %'
- =' Style6
 - a' -nsulated terminals' Use ring1terminal !or control) iring' Use !lange \$!or/% s#ade com#ression terminal !or termination o! stranded conductors at) iring devices, including ground connection'
 - b' S#lit bolt1#arallel connector'
 - c' Pigtail connector'
 - d' Pre1insulated multi1ta# connector6 AS- -ndustries EPolarisF series, -lsco Cor#' EClear
 - e' Ta#F ty#e PST, 2urndy 0FC- EUnita#F, or acce#ted substitution'
- :' -nstall s#lices, ta#s and terminations) hich have both mechanical strength and

insulation e(uivalent to or better than the conductor' " a/e s#lices, ta#s and terminations to carry !ull am#acity o! conductors) ithout #erceiving tem#erature rise'

- ;' Conductor s#lices and ta#s shall be made only in lunction boxes or) ire) ays and shall be accessible' Conductor s#lices and ta#s shall be /e#t to the minimum necessary to com#letely) ire each branch circuit and !eeder as indicated on the dra) ings' Conductor s#lices and ta#s shall generally be made and installed above grade'
- 8' S#lices belo) grade shall be in) ater1tight handholes, #ull boxes, or manholes a##roved !or this use, and shall be made) atertight) ith e#oxy resin ty#e s#licing /its similar to @ " Scotchcast Under no circumstances, ho) ever, shall the Contractor ma/e or install s#lices or ta#s belo) grade) ithout having !irst secured the) ritten a##roval o! the 3) ner?s duly authori4ed re#resentative'
- Use s#lice ta# and termination connectors) hich are com#atible) ith the conductor material' Use com#ression \$#ressure1ty#e, !ull circum!erential% lugs or connectors !or terminations or s#lices o! all stranded conductors' Use ring1tongue ty#e terminators on all control) iring' Use !langed s#ade ty#e terminators !or termination o! stranded conductors at) iring devices, including ground connection' Connect all conductors Ao'
 * > B and larger using high cc [(c)-0.958493(o)0.590251(n)0.590251(d)0.590251(u)0.51(')

, lectrical service) ill be #rovided by 7ubboc/ Po) er and 7ight) ith a utility trans!ormer' The

. 1 2

- @' 2us) ay Su##ly Circuits⁶ -nstall insulated e (ui#ment grounding conductor !rom the grounding bus in the s) itchgear, s) itchboard, or distribution #anel to e (ui#ment grounding bar terminal on bus) ay'
- <' Com#uter 3 utlet Circuits⁶ -nstall insulated e (ui#ment grounding conductor in branch1 circuit runs !rom com#uter1area #o) er #anels or #o) er1distribution units'
- -solated Brounding . ece#tacle Circuits⁶ -nstall an insulated e (ui#ment grounding conductor connected to the rece#tacle grounding terminal' -solate grounding conductor !rom race) ay and !rom #anelboard grounding terminals' Terminate at e (ui#ment grounding conductor terminal o! the a##licable derived system or service, unless other) ise indicated'
- :' -solated , (ui#ment , nclosure Circuits© For designated e (ui#ment su##lied by a branch circuit or !eeder, isolate e (ui#ment enclosure !rom su##ly race) ay) ith a nonmetallic race) ay !itting listed !or the #ur#ose' -nstall !itting) here race) ay enters enclosure and install a se#arate e (ui#ment grounding conductor' -solate e (ui#ment grounding conductor !rom race) ay and !rom #anelboard grounding terminals' Terminate at e (ui#ment grounding conductor terminal o! the a##licable derived system or service, unless other) ise indicated'
- ;' Aonmetallic . ace) ays6 -nstall an e (ui#ment grounding conductor in nonmetallic race) ays > hen called out !or s#eciali4ed e (ui#ment installations'
- 8' * ir1 uct , (ui#ment Circuits -nstall an e(ui#ment grounding conductor to duct1 mounted electrical devices o#erating at 169 D and more, including air cleaners and heaters' 2ond conductor to each unit and to air duct'
- I' > ater +eater, +eat1Tracing, and *nti!rost +eating Cables6 -nstall a se#arate
 e(ui#ment grounding conductor to each electric) ater heater, heat1tracing, and
 anti!rost heating cable' 2ond conductor to heater u

structure ta/ing care not to #enetrate any adlacent #arts' -nstall stra#s only in locations accessible !or maintenance'

- <' " etal > ater Service Pi#e6 Provide insulated co##er grounding conductors, in conduit, !rom building?s main service e(ui#ment, or grounding bus, to main metal) ater service entrances to building' Connect grounding conductors to main metal) ater service #i#es by grounding clam# connectors' > here a dielectric main) ater !itting is installed, connect grounding conductor to street side o! !itting' 2ond metal grounding conductor conduit or sleeve to conductor at each end'
- =' > ater " eter Pi#ing Use braided1ty#e bonding lum#ers to electrically by#ass) ater meters' Connect to #i#e) ith grounding clam# connectors'
- :' 2ond interior metal #i#ing systems and metal air ducts to e(ui#ment grounding conductors o! associated #um#s, !ans, blo) ers, electric heaters, and air cleaners' Use braided1ty#e bonding stra#s'
- ;' 2ond each aboveground #ortion o! gas #i#ing system u#stream !rom e(ui#ment shuto!! valve'

5 acewa\$s and Cond&its

iring Installation in 5acewa\$s

- 1' > ire and cable shall be #ulled into clean, dry conduit'
- 6' Pull conductors together) here more than one is being installed in a race) ay'
- Isted #ulling com#ound or lubricant,) hen necessary' Com#ound must not deteriorate conductor and insulation'
- <' o not use a #ulling means, including !ish ta#e, cable or ro#e) hich can damage the race) ay'
- =' -nstall) ire in race) ay alter interior ol building has been #hysically #rotected !rom the

#olyvinyl chloride \$PDC%' *luminum is not an a##roved material'

- b' Fittings' Com#ression ty#e, malleable iron,) ith insulated throat, either cadmium #lated or hot1di##ed galvani4ed'
- c' Use' For a##lications as indicated in A , C 691< *rt @=9'
- ;' 7i (uid1tight Flexible Aon1metallic Conduit
 - a' Conduit, li (uid1tight lac/et o! !lexible #olyvinyl chloride \$PDC% lac/et over rigid PDC core'
 - b' Fittings' Com#ression ty#e, malleable iron,) ith insulated throat, either cadmium #lated or hot1di##ed galvani4ed'
 - c' Use' For a##lications as indicated in A, C 691< *rt @=:'
- 8' Sealing Fittings' > here conduit sealing !ittings are re(uired, they shall be o! malleable iron, co##er1!ree cast aluminum, !erroalloy, or other suitable construction' Provide) ide !ill !itting to !acilitate insertion o! sealing com#ound' Provide !itting closures, unions, and ada#ters o! the same manu!acturer that are com#atible) ith the selected sealing !itting'
 - a' 3 rientation' Unless s#eci!ically noted other) ise, #rovide conduit sealing !ittings suitable !or installation in both hori4ontal and vertical race) ays'
 - b' Combination rain0Seal Fitting' > here drain0sealing !ittings are re (uired, they shall be o! malleable iron construction) ith an internal drainage #ath) hich #rovides a visual means to ensure that the com#ound chamber is #ro#erly !illed' The installation shall enable the

drain0breather !itting and !iller #lug to be installed immediately a!ter the sealing com#ound is #oured'

- c' Finish' +ot di##ed galvani4ed'
- d' Com#ound' Provide sealing com#ound com#atible) ith the s#ecilied sealing

!itting, and in com#liance) ith the re(uirements o! A, C1=91'1=\$C%'

e' 7isting' U7 88:'

irewa**\$**s

- 1' " aterial not less than 1:1gage sheet steel'
- 6' Cross section dimensions not less than <F by <F'
- @' Provide dividers to se#arate) iring o! di!!erent si

Facilities Planning and Construction

contract documents' "a/e trans!er s) itch suitable !or to# entry, bottom entry, or both as indicated on construction dra) ings and other a##licable contract documents'

Terminal bloc/s shall con!orm to A, " * -CS <' Terminal !acilities shall be arranged !or entrance o! external conductors !rom the to# or bottom o! the enclosure'

7&to6atic Solid State Controller#

- 1' Controller shall be solid state and designed !or a high level o! immunity to #o) er line surges and transients, demonstrated by test to -, , , Standard =8;' The controller shall have o#tically isolated logic in#uts, high isolation trans!ormers !or *C in#uts, and relays on out#uts'
- 6' The controller shall be e(ui##ed) ith sel! diagnostics,) hich #er!orms #eriodic chec/s o! the memory, in#ut0out#ut \$-03%, and communication circuits,) ith a) atchdog0#o) er !ail circuit'
- In the controller shall be accurate to) ithin 1 #ercent o! !ull1scale value !or measured #arameter' Doltage and current !or all #hases shall be sam#led simultaneously to assure high accuracy in conditions o! lo) #o) er !actor or large) ave!orm distortions'
- <' Doltage sensors shall allo) !or adlustment to sense #artial loss o! voltage on any #hase'
- * utomatic controls shall signal the engine generator set to start u#on signal !rom normal source sensors indicating loss o! normal source' 2attery voltage starting contacts shall be gold, dry ty#e contacts !actory1) ired to a !ield) iring terminal bloc/'
- :' The s) itch shall trans!er) hen the emergency source reaches the set #oint voltage and !re(uency'
- ;' The controller shall be ca#able o! storing records in memory !or access either locally or

#ersonnel to maintain all engine0generator sets on cam#us'

Factory and !ield test the com#lete automatic trans!er s) itch assembly to ensure #ro#er

regulated lead1 acid \$D.7*% batteries' Bel1cell batteries using a gelled electrolyte in a sealed battery case are A3T acce#table'

S#ecily a static, solid1state ty#e battery charger unit) hich automatically controls the charge rate and) hich has an adlustable charging rate' -nclude a charging rate ammeter, a voltmeter, and a manual reset, thermal overload circuit brea/er to #rotect the rectilier assembly and translormer' Si4e charger to recharge the battery !rom a !ully discharged state to a !ully charged state) ithin 6< hours or less'

* rrange charging system such that charging occurs !rom the normal source) hen the generator is shut do) n, and !rom the generator) hen the generator unit is su##lying emergency #o) er'

S#ecily closed1loo#, li(uid coolant system com#lete) ith unit1mounted radiator, !an, coolant manilold, coolant ex#ansion chamber \$over!lo) tan/%, tem#erature control valve, and engine1 driven coolant circulating #um#'

S#ecily an engine1mounted, corrosion1resistant, thermostatically controlled coolant heater\$s% lor each engine' +eater voltage shall be as sho) n on the #rolect dra) ings' The coolant heater shall be U7<11 listed and labeled'

S#ecily a high degree, critical1rated silencer \$mu!!ler% ca#able o! #assing rated engine exhaust gases) ith maximum silencing ca#acity'

S#ecily luel tan/ to be tan/1in1tan/ construction' -nterstitial s#ace shall have a luel sensor to detect a lea/ in the inner tan/' Provide lea/ detection and monitoring system lor the luel tan/' The alarm shall be on the remote alarm #anel' Fuel tan/ is to be si4ed lor 16 hours ol o#eration at maximum load'

S#ecily a direct1cou#led, <1#ole, synchronous, lo) reactance, brushless1ty#e generator \$alternator%) ith amortisseur) indings, revolving !ield #ermanent magnet generator \$P " B%, exciter, single #re1lubricated

sealed bearing, air cooled by a direct drive centrilugal blo) er lan, and built1in static rectilier and statically regulated tor (ue matched excitation system) ith automatic voltage regulator'

S#ecily a lactory1labricated, 1) ired, and 1tested micro#rocessor1based monitoring, metering,

and control system' The control system shall #rovide !or o#erator inter!ace, digital voltage regulation, digital governing, #rotective !unctions, automatic starting, automatic unloading and cool do) n, automatic shutdo) n, and communication o! alarm and status signals'

The generator controller shall be ca#able o! communicating all data, including alarm and tri# data, in "od2us . TU !ormat to the digital #o) er meter in the Benerator , mergency S) itchboard' > here the controller does not incor#orate or su##ort "od2us communication, #rovide a "od2us gate) ay !or communication bet) een the generator controller and the <891 volt Benerator , mergency S) itchboard #o) er meter'

*t time o! 3) ner's acce#tance, #rovide one set o! ne), unused !ilters o! each si4e and ty#e re(uired !or 16 months o! o#eration and maintenance' Provide !ilters in !actory sealed containers or) ra##ing, clearly labeled !or ease o! identi!ication' eliver !ilters to location as directed by 3) ner'

, (ui#ment shall be) arranted !rom de!ective) or/manshi# or materials !or a #eriod o! 6 years a!ter !inal acce#tance'

Electrical Identification

, lectrical identilication means, methods, materials and devices re(uired to com#ly) ith *AS-C264274033(m)-5.56086(e)0(t)-5.15007(e)0.589586(d)T.5639548651(t)T-6c [5(74F)tt02559(225)10(t)595255(07)(c)) = 0.589586(d)

- c', mbedded continuous metallic stri# or core is not suitable !or tracing and not a##roved'
- d' Printed legend indicating ty#e o! underground line'0
- @' Ta#e " ar/ers6 Dinyl or vinyl1cloth, sel!1adhesive,) ra#around ty#e) ith #re#rinted numbers and letters !or all control) iring'

Na6e8lates and Signs#

- 1' Salety Signs@ Com#ly) ith 69 CF . , Cha#ter HD--, Part 1119'1<='
- 6', ngraved Plastic Aame#lates and Signs⁶, ngraving stoc/, melamine #lastic laminate, minimum 101: inch thic/ !or signs u# to 69 s(' in and 108 inch thic/ !or larger si4es'
 - a' , ngraved legend) ith blac/ letters on) hite !ace'
 - b' Punched or drilled !or mechanical !asteners'
- @' Fasteners !or Aame#lates and Signs6 Sel!1ta##ing, stainless steel scre) s or Ao' 190@6, stainless1steel machine scre) s) ith nuts and !lat and loc/) ashers'

Installation#

1' -dentilication " aterials and evices6 -nstall at luncts

- c' -dentily normal #o) er circuits and emergency #o) er circuits'
- <' Paths o! Underground , lectrical 7ines uring trench bac/!illing, !or exterior underground #o) er, control, signal, and communication lines, install continuous underground #lastic line mar/er located directly above line at 16 to 1: inches belo) !inished grade'
- =' Secondary Service, Feeder, and 2ranch1Circuit Conductors6 Color1code throughout the secondary electrical system'

Panel!oards

, nclosure shall be #ro#er A , " * ty#e as sho) n on the dra) ings \complement

- 1' A, "*1G
 - a' 2ac/ box shall be galvani4ed steel !or !lush mounted branch circuit
 #anelboards' 2ac/ box shall have enamel electro1de#osited !inish over cleaned, #hos#hati4ed steel !or all other ty#e #anelboards'
 - b' > here #o) er monitors or metering are s#eci!ied on the ra) ings, the manu!acturer shall cut the doors !or !ield mounting o! the unit' . e!er to Po) er " etering section !or details'
- 6' A, "* @., @S and 166
 - a', nclosure and doors shall have enamel electro1de#osited !inish over cleaned #hos#hati4ed steel'
 - b' oors shall be gas/eted and e(ui##ed) ith tumbler ty#e vault loc/ and t) o
 trun/ latches) here re(uired by U7 standard' -nterior trim shall consist o! !our
 #ieces, each covering one gutter to#, bottom and both sides'

Construct cabinets in accordance) ith U7 =9' Use not less than 1:1gauge galvani4ed sheet steel' Provide a minimum <1inch gutter) iring s#ace on each side'

Facilities Planning and Construction

- e' -, C :69=6111'
- !' -, C :69=61@1'
- g' U7 :191911'
- h' U7 :19191619@9'
- 6' The P " instrument shall com#ly to the !ollo) ing electromagnetic immunity standards
 - a' *AS-0-, , , C@;'I9'1 \$all in#uts tested%'
 - b' -, C :19991<16 \$electrostatic discharge R25%'
 - c' -, C : 19991<1@ \$radiated , "!ield immunity R2%'
 - d' -, C : 19991<1< electric !ast transient R2%'
 - e' -, C : 19991<1= \$surge immunity R2%'
 - !' -, C : 19991<1: \$conducted immunity%'
 - g' -, C :19991<1; \$harmonics and interharmonics%'
 - h' -, C : 19991<18, \$immunity to #o) er !re (uency magnetic !ield%'
 - i' -, C :19991<111 \$immunity to voltage di#s, short interru#tions and voltage variations%'
 - " -, C: 19991<116 \$immunity to dam#ed oscillatory) aves
- @' The P " instrument shall com#ly to the !ollo) ing electromagnetic emission standards
 - a' FCC Title <; CF . Part 1= \$Sub#art 2, Class 26 Class 2 digital device, radiated emissions%'

- d' -C, S 99@ \$industry Canada, -C, S Class 2 digital device, radiated0conducted emissions%'
- e' -, C :19991@16 \$limits !or harmonic currents emissionsC e (ui#ment in#ut current less than 1: am#eres #er #hase%'
- !' -, C :19991@1@ \$limitation o! voltage !luctuations and !lic/er in lo) voltage su##ly systems !or e(ui#ment) ith rated current less than 1: am#eres%'
- -' The P " instrument shall com#ly to the !ollo) ing measurement standards) ith third #arty com#liance certi!ication as noted⁶
 - a' * AS- C16'69, Class 9'6 \$Tests 111, 11, 10, 1< !or accuracy%' Third #arty certi!ied'
 - b' -, C: 19991<1@9 , dition 6, Class S' Third #arty certi!ied'
 - c' -, C :69=@166, Class 9'6S' Third #arty certi!ied'
 - d' -, C : 69=@16@, Class 6S' Third #arty certilied'
 - e' -, C :69=@16<, Class 9'=S'
 - !' -, C0, A : 1==;116'
- =' The P " instrument shall com#ly to the !ollo) ing communications standards) ith third #arty com#liance certi!ication as noted6
 - a',-*0T-*1<8='
 - b' -, C: 18=9 \$, dition 1%' Third #arty certi!ied'
 - c' -,,, 896'@16916'
 - d' -, , , 181=16916 \$ AP@ 1 istributed Aet) or / Protocol%'
 - e' " odbus -ntero#erability'

C&rrent)Voltage In8&ts#

- 1' The P " instrument shall have no less than three \$@% voltage in#uts and !our \$<% current in#uts'
- 6' The P " instrument in its standard con!iguration shall be able to acce#t voltages u# to

1'

In the P " instrument shall su##ort the synchroni4ation o! the demand interval using a digital in#ut, a command via communications, or internal cloc/'

7cc&rac\$#

- 1' The P " instrument shall meet *AS- C16'69 accuracy Class 9'6'
- 6' The P " instrument shall meet -, C : 69=@166 accuracy Class 9'6S'
- 0' The P " instrument shall meet -, C : 69=016< accuracy Class 9'=S'
- -' The P " instrument shall #rovide !our1(uadrant metering'

Sa68ling#

1' The P " instrument shall sam#le continuously at 6=:

- =' The P " instrument shall have a !ield installable battery !or real time cloc/ ride1 through that can be installed) ithout need to remove the instrument !rom the installation'
- : ' The P " instrument shall have a time1stam#ed event log) ith the !ollo) ing !eatures
 - a' Shall su##ort at least =99 events'
 - b' The number o! records in the log shall be #rogrammable'
 - c', ach event shall be recorded) ith the date and time o! the event, the cause and e!!ect o! the event, and the #riority o! the event'

Facilities Planning and Construction

- -' The P " instrument shall be able to su##ort at least @6 concurrent " odbus TCP0-P connections'
- =' The P " instrument shall have a " odbus TCP0-P gate) ay to #rovide a net) or/ connection to " odbus serial devices connected to a serial #ort on the instrument'
- :' The P " instrument shall have the ability to read !rom and) rite to " odbus devices connected to a serial #ort on the instrument and on a common local area , thernet net) or/'
- ;' The P " instrument shall serve) eb #ages) ith the !ollo) ing ca#abilities to
 - a' Provide real1time and historical data vie) s in both tabular and gra#hical !ormats'
 - b' Provide a histogram o! harmonic data through the : @rd harmonic'
 - c' Provide an -T-C \$C2, " *% and a S, " , 19 summary o! voltage disturbances'
 - d' Provide a A, " * motor derating curve'
 - e' Provide a #hasor diagram re#resentation o! the electrical connections to the meter'
 - !' Provide a summary o!, A =91:9 #o) er (uality data along) ith a #ass 0 !ail analysis'
 - g' Provide a gra#hical trend !or voltage, average current, !re(uency and #o) er demand along) ith a !orecast o! the next < #oints'
 - h' Su##ort the ability to #rovide technical documents and dra) ings in P F !ormat'
 - i' Su##ort user de!ined) eb #ages containing data !rom the host meter as) ell as data !rom " odbus devices connected to a serial #ort on the instrument and on a common local area , thernet net) or/'
- 8' The P " instruments shall have t) o \$6%, thernet #orts that su##ort the !ollo) ing !unctions6

- a' * utomatically , 1mail alarm noti!ications or scheduled system status u#dates'
 , 1mail messages sent by the P " instruments shall be able to be received li/e any ordinary , 1mail message'
- b' * bility to #ush historical logs through the , thernet communication #ort to a remote server based on a user de!ined schedule or an event'
- c' 2uilt in) eb #ages in the P " instruments shall enable access to real1time values and basic #o) er (uality in!ormation using a current standard) eb bro) ser' 2asic con!iguration o! the P " instruments shall also be able to be #er!ormed through the bro) ser'
- I' The P " instruments shall automatically #rovide , 1mail noti!ications !or alarms and system status u#dates based on user con!iguration'
- 19' The P " instrument shall have the ability to #ush historical logs through the , thernet communication #ort to a remote server based on a user de!ined schedule or an event'
- 11' The P " instrument shall #rovide an -, C : 18=9 com#lian1(s)-0.957164() 5.74033.98087 0 0 1

- g' Fault ca#ture data !or three1#hase voltage and current in C3 " T . * , !ormat, including, but not limited to, the !ollo) ing6
 - 1% U# to 66= C3 " T . * , !ault ca#ture !iles'
 - 6% The !iles shall be do) nloadable via standard FTP client'
 - The device shall su##ort client noti!ication through , C : 18=9 to signal
) hen ne) !ault ca#tures have been created and are available \$. . ,
 logical node%'
- h' The !ollo) ing logical nodes shall be su##orted in addition to 77A3 and 7P+ \$mandatory%
 - 1% " + * C harmonics'
 - 6% " " T . C metering'
 - @% " " HUC measurement'
 - <% "S\-C se(uence and imbalance'
 - =% "ST * C metering statistics'
 - :% BB-30 the ability to vie) data !rom and control all -03 #oints in the meter'
 - ;% . ., C disturbance recorder !unction'
- 16' The P " instrument shall have the ability to announce its #resence on a local net) or/ segment using evice Pro!ile > eb Services \$ P > S% over -Pv: local addressing) ithout user interaction' The instrument shall be vie) able in a " icroso!t] > indo)s] > indo)s , x#lorer) indo) vie) o! net) or/ devices as a lin/ that) ill #rovide access to the instrument's) eb inter!ace'

I)O O8tions#

1' The P " instrument shall be ca#able o! having 6; digital in#uts ca#able o! one \$1% millisecond timing resolution'

Facilities Planning and Construction

Some exam#le module ty#es include, but shall not be limited to, minimum, maximum, set#oint, digital in#ut, and digital out#ut'

- =' Programming through a com#uter shall be secured by user and #ass) ord'
- :' Programming through the instrument's dis#lay shall be secured by #ass) ord'
- ;' Programmability shall be sectioned such that) hen the meter is sealed it shall still be con!igurable to an extent that does not a!!ect the accumulation o! revenue metering related data'

Power >&alit\$#

- 1' > ithout the use o! se#arate so!t) are, the P " instrument shall be able to measure #o) er (uality statistically in accordance) ith -, C: 19991<1@9, Class S'
- 6' The P " instrument shall be certi!ied by a third #arty as com#liant) ith -, C :19991<109 Class S, , dition 6'
- @' The P " instrument shall be certi!ied by a third #arty as com#liant) ith -, C :6=8:, P \ -1 S'
- <' > ithout using se#arate so!t) are, the P " instrument shall determine statistical indicators o! #o) er (uality #arameters that shall include, but shall not be limited to di#s and s) ells, harmonics, and !re(uency, in accordance) ith the , A =91:9 standard'
- =' > ithout the use o! se#arate so!t) are, the P " instrument shall ma/e available the statistical indicators o! #o) er (uality #rovided by , A=91:9 on the instrument's dis#lay, or via communications #rotocols such as -3A, " odbus . TU, " odbus TCP0-P, or via) eb #ages'
- :' The P " instrument shall be ca#able o! monitoring the value o! any statistical indicator o! #o) er (uality \$#resent, #redicted, average, or othe

;' The P " instrument shall su##ort symmetrical com#onents'

avefor 6 Ca8t&re#

- 1' The P " instrument shall be able to #er!orm 6=: sam#les #er cycle) ave!orm recording'
- 6' The P " instrument shall have t) enty1one \$61% #rogrammable oscillogra#hic) ave!orm recorders', ach) ave!orm recorder shall have the !ollo) ing !eatures6
 - a' *ble to record a digiti4ed re#resentation o! any #hase voltage or current signal
) ith no dead time bet) een such recordings, and the ability to trigger multi#le
 such recordings in continuous succession, and at di!!erent resolutions
 simultaneously'
 - b', nabled and triggered manually or through internal o#erating conditions, including, but not limited to, #eriodic timer or set#oint activity'
 - c' +all1cycle triggering shall be su##orted !or) ave!orm recorders'
 - d' The number o! records \$de#th% o! each data recorder, and the over!lo) conditions \$sto#1) hen1!ull or circular% shall be #rogrammable'
- @' The P " instrument shall be able to record contin

>K, or elta mode

The #o) er meter shall be ca#able o! being a##lied) ithout modi!ication at nominal !re(uencies o! =9 or :9+4'

The #o) er meter shall have a real time cloc/) ith battery bac/1u#) ith at least 1 year ride through time) ithout external #o) er'

6% echanical

The #o) er meter unit shall have removable connectors !or voltage in#uts, control #o) er, communications, in#ut and out#uts'

The #o) er meter unit shall be easily mounted in the #re1made cut1out) ithout tools'

Po) er meter !orm !actor shall be L -A) ith 16 x 16 mm \$@':66F x @':66F% cut1out and I: x I: mm \$@';8F x @';8F% #anel mount integrated dis#lay'

The #o) er meter unit shall be -A1rail mounted) ith . N16= #ort to connect an o#tional remote dis#lay' The remote dis#lay shall be easily mounted in the #re1made cut1out) ithout tools'

. emote dis#lay !orm !actor shall be L -A) ith 16 x 16 mm \$@':66F x @':66F% cut1out and 1: x 1: mm \$@';8F x @';8F% #anel mount remote dis#lay'

The remote dis#lay shall meet A , " * Ty#e 16 and -P=6 ratings at a minimum) hen #ro#erly installed'

^{®%} Sam#ling and +armonic . esolution

The current and voltage signals shall be digitally sam#led at a rate high enough to #rovide true rms accuracy to the @1st harmonic \$!undamental o! =90 : 9 +4%' The #o) er meter shall #rovide continuous sam#ling at a minimum o! u# to :< sam#les0cycle, simultaneously on all voltage and current channels in the meter'

The current and voltage signals shall be digitally sam#led at a rate high enough to #rovide true rms accuracy to the : @rd harmonic \$!undamental o! :9 +4%' The #o) er meter shall

#rovide continuous sam#ling at a minimum o! u# to 168 sam#les0cycle, simultaneously on all voltage and current channels in the meter'

<% Current -n#uts

9119 am#s) ith = am#s nominal in#ut !rom CT secondary'

The #o) er meter may be a##lied in three1#hase, three1 or !our1) ire systems'. esidual current shall be calculated by vectorial addition o! the #hase currents'

* !ourth CT in#ut shall be available to measure neutral or ground current'

=% Doltage -n#uts

Aominal o! <99 D 71A 0 : I9 D 717' " aximum o! <89 D 71A 0 868 D 717'

:% Control Po)er \$ evice%

The monitoring device control #o) er shall beg

1191<89C 71A ^19 J or 16=16=9 ^ 69 J D C

1191<89 ^19 J , D * C or 16=16=9 ^ 69 J D C

;% , nvironmental Characteristics 3#erating tem#erature range

" eter6 16= to ;9 PC \$11@ to 1=8 PF%, dis#lay 169 to ;9 PC \$1< to 1=8 PF%

" eter and remote dis#layG 16= to ;9 PC \$11@ to 1=8 PF%

8% * ccuracy

The #o) er meter unit shall use !our1(uadrant metering' The #o) er meter shall sam#le current and voltage simultaneously) ithout ga#s) ith :< sam#les #er cycle \$4ero blind%'

The #o) er meter device shall com#ly) ith *AS- C16'69 Class 9'= and -, C :1==;116 Class 9'= !or revenue meters'

-, C :1==;116 Class 9'6 !or revenue meters'

in each Po)er "eter include the !ollo) ing@ ata logs, "in@" ax log !iles o! selected #arameter values, *larm logs !or each user de!ined alarm or event and >ave!orm log' The meters shall o!!er the !ollo) ing on1board nonvolatile memory@1'1 " 2

The #o) er meter shall have onboard memory big enough to log 1< values every 1= minutes !or I9 days or 6 values !or :9 days'

1@% * larming

* larm events shall be user de!inable'

Set#oint driven alarm events shall be available !or voltage0current #arameters, in#ut status, and end o! interval status' For each over0under metered value alarm, the user shall be able to de!ine a #ic/1u#, dro#1out, and delay'

The #o) er meter shall have a minimum o! 68 set#oint driven alarms, or 61 set#oint driven alarms, < digital alarms, < unary alarms, 19 boolean alarms and = custom alarms'

There shall be !our alarm severity levels in order to ma/e it easier !or the user to res#ond to the most im#ortant events !irst'

+istorical alarms shall have a time stam#ing) ith 1 second accuracy' The meter's real time cloc/ shall be able to synchroni4e using communications command'

-ndication o! an alarm condition shall be given on the !ront #anel'

-ndication o! an alarm condition shall be delivered by email and/or text message' Settings !or email1on1 alarm shall be con!igurable via the meter) eb #ages'

-ndication o! an alarm condition shall be delivered by SA " P Tra#s' Settings !or SA " P shall be con!igurable via the meter) eb #ages'

1<% Communications

The #o) er meter shall communicate via serial . S1<8= "odbus or Nbus #rotocol'

The #o) er meter shall #rovide, thernet communications using "odbus TCP at 190199 " baud using UTP'

- _ -ndividual harmonics u# to the order o! 1=th
- _ Tem#erature \$-nternal * mbient%
- _ Z1Factor \$Per1Phase%
- _ Crest Factor \$Per1Phase%

11%, nergy . eadings

- _ *ccumulated , nergy \$.eal />h, .eactive /D* .h, *##arent /D*h% \$Signed0*bsolute%
- _ *ctive , nergy elivered
- _ . eactive , nergy elivered
- _ , nergy Total Consum#tion !or) ater, air, gas, steam \$> * B , S% !or external meters 69'
- 69% emand . eadings
 - _ emand Current Calculations \$Per1Phase, @1Phase *vg, Aeutral%1 Present and Pea/
- 61% emand Calculations \$@1Phase Total%
 - _ .eal Po)er
 - _ . eactive Po)er
 - _ *##arent Po)er
- 66% * II #o) er demand calculations shall use any one o! the !ollo) ing calculation methods, selectable by the user
 - _ Thermal demand using a sliding) indo) techni (ue'
 - _ 2loc/ interval,) ith o#tional sub1intervals' 2loc/ methods available are Sliding,

Fixed and . olling'

- _ emand can be calculated using a Synchroni4ation signal
- _ emand can be sync0.590251(c)-0.957164(h)55xc nusid d lc lichc!1()-5.150r7812884.10.9

!lux density shall be) ell belo) the saturation levels and) ell belo) the usual level !or standard trans!ormers'

Provide a 669PC insulation system) hich is the manu!acturer's standard !or a maximum 11=PC rise over a <9PC ambient' *II insulating materials are to exceed A, " * ST69 Standards and be rated !or 669PC U7

Co68onent 5ecogni;ed ins&lation s\$ste6,

 * verage sound levels shall not exceed the !ollo) ing values as measured in accordance % 1000) ith A , " * ST 691<'16'

/D* .ating	d2
91 I	<9
191=9	<=
=111=9	=9

- <' Polarity and #hase relation tests on the rated voltage connection'
- =' *##lied #otential tests
- :' -nduced #otential test
- ;' Ao1load and excitation current at rated voltage on the rated voltage connection'

iring Devices

Provide bac/1 and side1) ired, industrial1grade, !actory1!abricated) iring devices in the ty#e and electrical rating !or the service indicated' > here ty#e and grade are not indicated, #rovide #ro#er selection to corres#ond) ith branch circuit

:' Time scroll !eature shall allo) manual overriding o! the #reset time1out #eriod' Selecting time scroll 3A shall allo) time1out #eriod to scroll u# throughoting

ex#osure *AS-0-, , , C:6'<111111 environments on the load side o! the !acility's meter or main overcurrent device'

Single #ulse surge current ca#acity6 169/* #er mode o! #rotection !or a combined rating o! 6<9/* #er #hase' *II #rotected modes are de!ined #er A, " * 7S 111116, #aragra#h 6'6';' Follo) ing -, , , Standard 119911116, section I'11'6 recommendations, surge #rotection devices shall #rovide #rotection in all modes' > K, con!igured systems shall #rovide 7ine to1 Aeutral \$71A%, 7ine1to1Bround \$71 B%, 7ine1to17ine \$717%, and Aeutral1to1Bround \$A1B% #rotection'

The system shall #rovide a U7 168@ 7isted , lectromagnetic -nter!erence Filter ca#able o! attenuating noise levels #roduced by electromagnetic inter!erence and radio !re(uency inter!erence' The system's !iltering characteristics shall be ex#ressed #er A, " * 7S11, 1116, Section 6'6'11'

, ach unit shall be ca#able o!) ithstanding tem#orary over1voltage events that may be encountered) ithin the distribution system,) ithout damaging any o! the com#onents) ithin the sgroB

Facilities Planning and Construction

Facilities Planning and Construction

!lash event\$s% !or motor starter !ault conditions'

- 1' " otion Sensors
 - a' Coverage6 6999 !t` !ield o! vie) @:9a
 - b' Technology Ultrasonic combined) ith Passive -n!rared'
 - c' Sensor6 intelligent sell1ada#tive) ith non1volatile memory'
 - d' *II #o) er su##lies shall be #rovided above the ceiling'
 - e' -nstallation6 ceiling mounted'
- 6' 7ighting "anagement Panel
 - a' A, " *11, one single cabinet) ith :11 modules
 - b' Provides relays, dimming, and s) itching ca#abilities'
 - c' Panel shall be ca#able to su##ort all ty#es o! loads including but not limited to
 7, , 7, dimmed, electronic lo) voltage trans!ormers, incandescent, halogen,
 !luorescent 9119D dimmed, +- 9119D dimmed'
 - d' Solid state lighting controls'
 - e' 9119v dimming ca#abilities
 - !' , mergency connections'
 - g' Universal voltage o! o#eration \$169 to 6;; D*C% =90:9 +4'
 - h' Feed through, or <) ire main lug \$@ #hase and neutral%'
 - i' 2ranch circuits 6911 : am#s continuous rating, 1< / *

- I' Ty#ical 7ighting Control "aster Panel shall meet the !ollo) ing standards6
 - 1' U7 7isted
 - 6' FCC #art 1=
 - @'

- d' Shall be ca#able !or 618 inde#endently #rogrammable buttons #er station'
- e' 2ac/lit buttons
- !' Status 7, indicators'
- g' > all #late and !ace #late shall be in at least @ colors and easy to customi4e'
- h' Su##ly voltage6 1:D C V 68 D C'
- i' , nvironment6 @6119<aF \$9 to <9aC%
- l' . elative humidity less than 19 J non condensing
- /' Communications6 through , -*1<8= connector and t) o condumrs !or #

Contractor shall #rovide all related #o) er #ac/s !or controls'

* dditional control devices necessary to achieve daylight harvesting and over ty#es= 7ight 1g Centre Control as indicated on *S+. * ,16916 and0or - , CC 691=, st all be #rovided by engine i!

- 8' 7ens6 UC stabili4ed extruded #olycarbonate'
- I' 7, driver at @=99Z and X86 C . -'
- 19' Prolected li!e6 7;9 at ;=,999 hours at =9aC
- 11' > arranty6 19 years'
- 16' 7istings6 U7, > et listed'
- 1@' 3#erating voltages6 16916;; D*C'
- 1<' Provide battery #ac/ 196=116=9 Im sel! contained) ith 19 minutes at 91==aC
- 1=' The luminaire shall be vandal resistance'

Contractor shall #rovide luminaires in ar/ 2ron4e !inish or as indicated by , ngineer0*rchitect'

E=terior 'ighting

This section includes exterior luminaires) ith lam#s and ballasts, luminaire1mounted #hotoelectric relays, exterior) ireless controls, and #oles and accessories'

esign all lighting using -, SA* \$-Iluminating , ngineering Society o! Aorth *merica%' *##ly the in!ormation !rom -, SA* . ecommended Practice, esign Buide and +andboo/ #ublications'

-Ilumination levels) ill be determined in design meeting) ith the Protect Team based on tas/ and other criteria' *##ly the lighting distributions set out in the ar/ S/y -nternational guidelines to minimi4e s/y glo)'

, xterior lighting to be 7, unless noted other) ise'

esign should have limited) all #ac/s'

Derily normal o#eration o! lighting units alter installing luminaires and energi4ing circuits) ith normal #o) er source'

" easure light intensities at night' Use #hotometers) ith calibration relerenced to A-ST standards' Com#ly) ith the -, SA* testing guide\$s% !or the a##licable lighted tas/'

Pre#are a) ritten re#ort o! tests, ins#ections, obs

- 2allasts
 19 !or every 199 o! each ty#e and rating installed' Furnish at least one o!
 each
 each
- <' Blobes and Buards⁶ 19 !or every =9 o! each ty#e and rating installed' Furnish at least one o! each ty#e'
- eneral re9&ire6 ents for 8oles and s&88ort co68onents
 - 1' Structural Characteristics@ Com#ly) ith * *S+T3 7TS1<'
 - 6' > ind17oad Strength o! Poles⁶ * de (uate at indicated heights above grade) ithout
 !ailure, #ermanent de!lection, or) hi##ing in steady) inds o! 199 " P+,) ith a gust
 !actor o! 1'@'
 - " ountings, Fasteners, and *##urtenances6 Corrosion1resistant items com#atible
) ith su##ort com#onents'
 - <' Concrete Pole Foundations[®] Cast in #lace,) ith anchor bolts to match #ole1base !lange' Concrete' . ein!orcement, and !orm) or/ are s#eci!ied in Section @'
 - a' 2ases installed in #ar/ing lots in curbed #lanters that #revent vehicle contact shall be set at <F above the curb height'
 - b' 2ases installed in #ar/ing lots that are sublect to vehicle contact shall be set
 0:F above the #avement'
 - c' 2ases installed adlacent to side) al/s shall be set !lush against the) al/ and <F above the edge o! the) al/'

Steel Poles

- 1' Poles[©] . ound, ta#ered' Com#ly) ith *ST " * =99, Brade 2, carbon steel) ith a minimum yield o! <:,999 #sig 11#iece construction u# to @= !eet in height) ith access handhole in #ole) all' Poles shall be !our1bolt mounted to a concrete !oundation'
- 6' Steel "ast *rms@ Single1arm ty#e, continuously) elded to #ole attachment #late'

" aterial and !inish same as #ole'

- @' 2rac/ets !or 7uminaires etachable, cantilever,) ithout underbrace match #ole !inish and material'
- <' Pole1To# Tenons6 Fabricated to su##ort luminaire or luminaires and brac/ets indicated, and securely !astened to #ole to#'
- =' Brounding and 2onding 7ugs⁶ > elded 1061inch threaded lug, com#lying) ith re (uirements in Standard !or \Brounding and 2onding,\I listed !or attaching grounding and bonding conductors o! ty#e and si4e listed in that Standard, and * ccessible through handhole'
- :' Po) der1Painted Finish6 Com#ly) ith A * * " "?s M " etal Finishes " anual !or * rchitectural and " etal ProductsM !or recommendations !or a##lying and designating !inishes'
 - a' Sur!ace Pre#aration6 Clean sur!aces to com#ly) ith SSPC1SP 1, MSolvent Cleaning,M to remove dirt, oil, grease, and other contaminants that could im#air #aint bond' Brind) elds and #olish sur!aces to a smooth, even !inish' . emove mill scale and rust, i! #resent, !rom uncoated steel, com#lying) ith SSPC1SP =0A*C, Ao' 1, M > hite " etal 2last Cleaning,M or SSPC1SP 8, MPic/ling'M
 - b' -nterior Sur!aces o! Pole6 3 ne coat o! bituminous #aint, or other) ise treat !or e (ual corrosion #rotection'
 - c', xterior Sur!aces6 " anu!acturer?s standard !inish consisting o! one or more coats o! #rimer and t) o !inish coats o! Sher) in > illiams E ar/ 2ron4eF

3 ther " anu!acturers) ith a dar/ bron4e !inish as standard shall submit a color sam#le o! <F s (uare on similar materials as the construction o! the #ole !or TTU to determine an acce#table match to the standard'

71&6 in&6 8oles to !e */?al&6 in&6 ro&nd ta8ered with 8edestal !ase !olted to concrete fo&ndation 6an&fact&red !\$#

- 1' 7exington Standard Cor#oration
- 6' +a#co 7ighting Com#any
- @' Dalmont #oles'

Cast concrete 8oles to !e e 6 !edded in ta 6 8ed earth +t\$8,. or e 6 !edded in concrete 6 an&fact&red !\$#

- 1' > asau Tile Terra!orm iv' o! > ausau, >-
- 6' Custom esign Precast o! > eston, >-
- @' Stone 7egends

'&6 inaries and E9&i86 ent

- 1' Pole1to# !or 1<? 7exington round ta#ered aluminum #ole6
 -) ith ouble1T'
 - a' 7umec c 01<19961:=><67, <Z1.1*C1.7,=16;;1SF0@1DP*12.TH1 7 " S1@6;92
 -) ithout ouble1T'
 - b' 7umec c 01<19961:=><67, <Z1.1*C1.7,=16;;1SF0@1DP*12.TH 1 7 " S1@6;9
 - c' Zing 7uminiaire c Z<6813 * * . 1D1;=\$SS7%1=99916;;1Z@11TTS1HPB
 - _ add ouble1T) hen re (uired'

Aoted The ouble1T shall only be used on TTU *thletic Facilities'

- 6' Pole1to# !or TTU concrete 7ight Pole6
 -) ith ouble1T'
 - a' 7umec c 0<; *19961:=><67, <Z1.1*C1.7,=16;; 1SF0<1TA@1DP*12.TH1

7 " S1@6182

3#eration and control 1991<89 D*C, 1999) att

Pea/ #o) er use by nodes shall be less than t) o \$6%) atts'

" anagement'

, lectrical Contractor) ill #rovide the #ole number !rom item 1;) ith the node serial number to the 3!!ice o!, nergy " anagement to enable adding the nodes into the 7ume) ave system'

*Il externally mounted nodes are to be rated !or 1991<89 D*C, =90:9 +4' \$T3PI99T7H1<89) ith A , " * *AS- 10::'<1 ; 1 #in connector%'

7ume) ave T3PI99 Series (T3PI99T7H) ith A, " * * AS- 1@:'<1 ;1#in connector (T3PI99TA) ith threaded ni##le connection'

7ume) ave system is already de#loyed in Texas Tech Cam#us, and all #arts and com#onents shall be com#atible) ith existing' 3ther manu!acturers) ill be consider by, ngineer'

Bollards

7, , @6F height, :F rounds, dar/ bron4e !inish,) ith louvers on to#' The body shall be extruded aluminum) ith a heavy cast aluminum base' The internal globe is !luted, clear tem#ered glas590251(e)0.5902 aablo en) tThe 'ii,g te(h)0.590251(e)0.590cT* [(7)0.

Photoelectric Control#

Facilities Planning and Construction **Design and**

- a' *verage W 69 V @9 !oot1candles'
- b' Unilormity ratio \$ " ax0 " in% not to exceed :G1'
- c' > or/ing height W !inished !loor \$4ero inches%'

=' Corridors and Stairs6

- a' "inimum W 19 !oot1candles'
- b' Uni!ormity ratio \$ " ax0 " in% not to exceed 1961'
- :', mergency egress lighting along corridors, stairs, and other egress #aths as designated by *rchitect6
 - a' "inimum W 1 !oot1candle'
 - b' Unilormity ratio \$ " ax0 " in% not to exceed 1961'
 - c' > or/ing height W !inished !loor \$4ero inches%'
- ;' "echanical .ooms, , lectrical .ooms, and , levator , (ui#ment .ooms ${\ensuremath{\mathfrak{g}}}$
 - a' "inimum W 69 !oot1candles'
 - b' Uni!ormity ratio \$ " ax0 " in% not to exceed :61'
 - c' > or/ing height W !inished !loor \$4ero inches%'
 - d' atalTelecommunications 0-TW @9 !oot1candles'
 - e' Uni!ormity ratio \$ " ax0 " in% not to exceed =61'
 - !' > or/ing height W @9 inches above !inished !loor'

8' Storage .ooms'

- a' *verage W 1= !oot1candles'
- b' > or/ing height W @9 inches above !inished !loor'

acce#table', xit signs shall have stencil !ace) ith : 1inch high letters' Provide red letters) ith smooth

di!!usion !ace, unless other) ise indicated or scheduled' -ndividual 7, 's shall not be visible through the di!!usion material' Provide directional arro) s as indicated' Provide exit signs) ith battery bac/u#'

2attery shall be a maintenance !ree lead1calcium or nic/el1cadmium, < to : volt,) ith 1'= hour minimum ca#acity to su##ly connected lam# load' > here larger ca#acity is indicated on #lans or schedules, #rovide unit) ith larger ca#acity', xit signs shall be com#liant) ith U716<, AFP* 191 \$7i!e Sa!ety Code%, and , nergy Star'

Provide enclosed, mechanically1held, latching, magnetic lighting contactor designed to) ithstand the large initial inrush current o! tungsten and ballast lam# loads as) ell as non1motor \$resistive% loads) ithout contact) elding'

-nstall luminaires in accordance) ith the manu!actu

Facilities Planning and Construction Design and Construction Standards Division 26 - Electrical